Durability of TAVR vs. SAVR Pathology Insights

Aloke V Finn, MD

CVPath Institute, Inc,
Gaithersburg, MD, USA

Disclosure Statement of Financial Interest

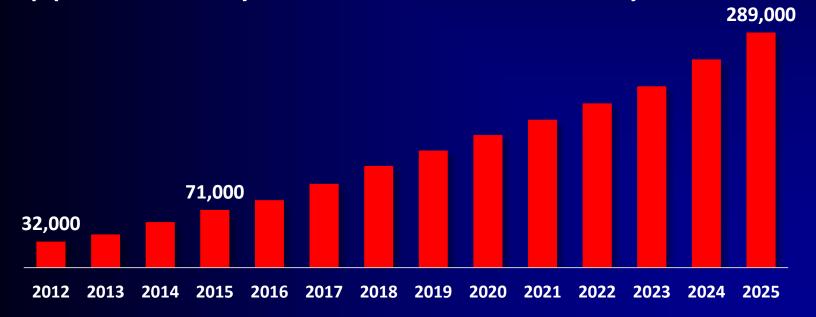
Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Grant/Research/Clinical Trial Support

R01 HL141425 Leducq Foundation Grant; 480 Biomedical; 4C Medical; 4Tech; Abbott; Accumedical; Amgen; Biosensors; Boston Scientific; Cardiac Implants; Celonova; Claret Medical; Concept Medical; Cook; CSI; DuNing, Inc; Edwards LifeSciences; Emboline; Endotronix; Envision Scientific; Lutonix/Bard; Gateway; Lifetech; Limflo; MedAlliance; Medtronic; Mercator; Merill; Microport Medical; Microvention; Mitraalign; Mitra assist; NAMSA; Nanova; Neovasc; NIPRO; Novogate; Occulotech; OrbusNeich Medical; Phenox; Profusa; Protembis; Qool; Recor; Senseonics; Shockwave; Sinomed; Spectranetics; Surmodics; Symic; Vesper; W.L. Gore; Xeltis.

Speaker's Bureau

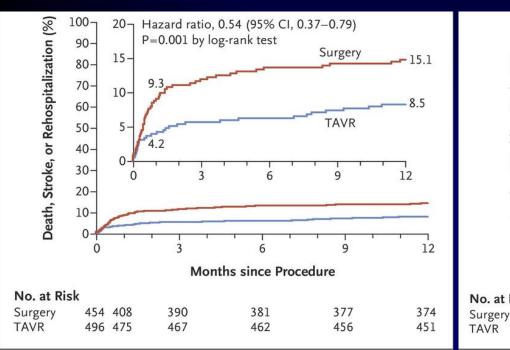
Abbott Vascular; Biosensors; Boston Scientific; Celonova; Cook Medical; CSI; Lutonix Bard; Sinomed; Terumo Corporation.

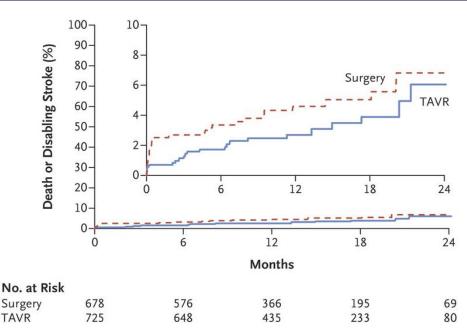

Consultant/Advisory Boards

Amgen; Abbott Vascular; Boston Scientific; Celonova; Cook Medical; Lutonix Bard; Sinomed.

Owner of a healthcare company: No Stockholder of a healthcare company: No

Estimated Global TAVR Procedure Growth


- In 2015, TAVR accounted for 32% of all Medicare AV replacements in the US
- Globally, TAVR is expected to grow approximately 4-fold in the next 10 years



TAVR can be considered an alternative treatment for low-risk patients

PARTNER 3

Evolute Low Risk Trial

N Engl J Med. 2019 Mar 17. doi: 10.1056/NEJMoa1814052. [Epub ahead of print]

N Engl J Med. 2019 Mar 17. doi: 10.1056/NEJMoa1816885. [Epub ahead of print]

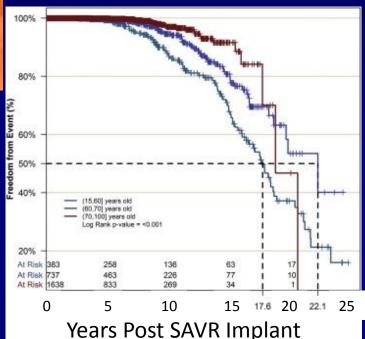
Long term durability data are warranted

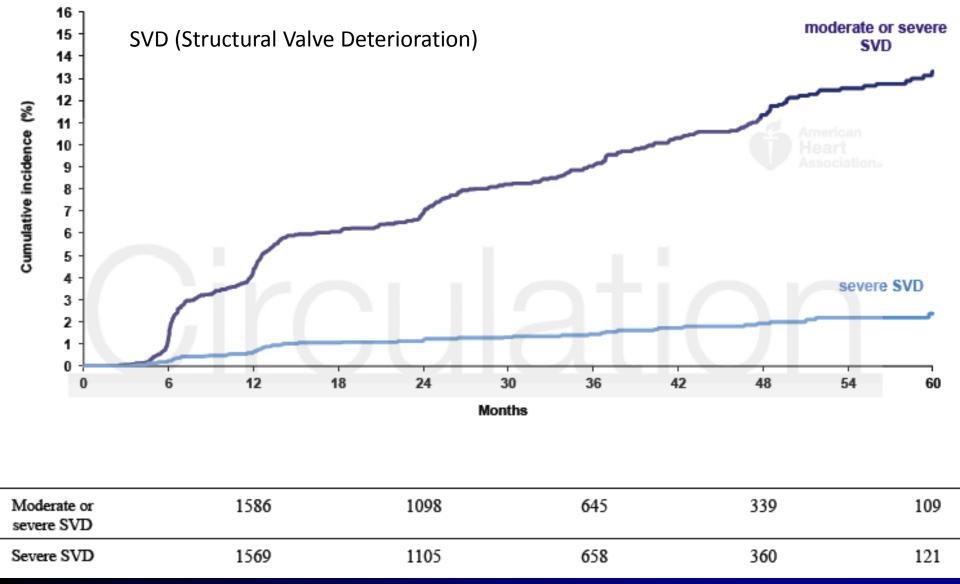
TAVR and SAVR What is the similarities?

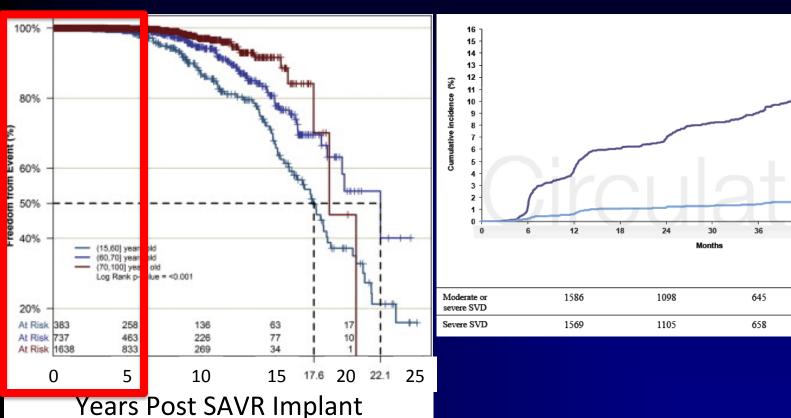
Surgically Implanted Bioprosthetic Valve: Summary

<u>Disadvantages</u>: Limited durability beyond 10 years especially in younger patients: cusp degeneration or tears, Ca⁺⁺, pannus formation and endocarditis (1–4% of patients during the 1st year, and in approximately 1% per year thereafter.)

Tears Calcification Infective endocarditis


Freedom from Event (Severe AS/AR or Redo)


Thrombus


Bourguignon T et al. Ann Thorac Surg. 2015;99(3):831-7.

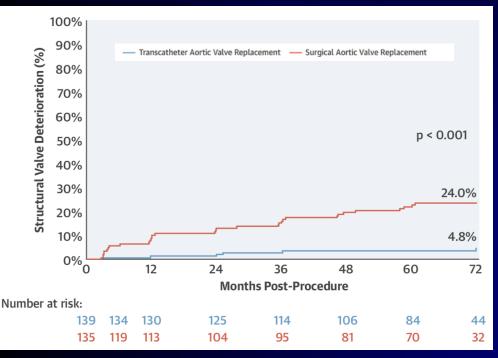
Long term f/u of TAVR FRENCH 2 Registry 5-year f/u

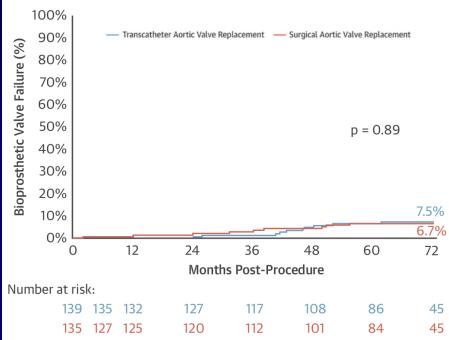
Long term duration of SAVR and TAVR is similar?

SAVR Freedom from Event (Severe AS/AR or Redo) 99%/5Y

TAVR severe SVD 1%/5Y 339

360

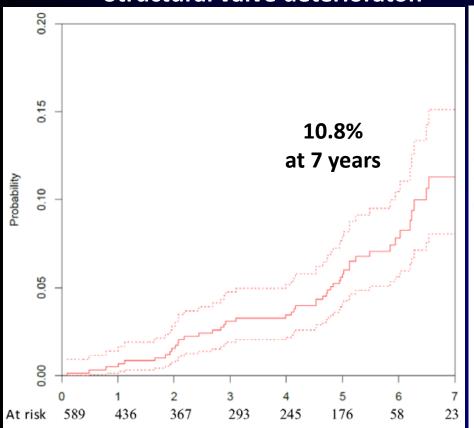

109

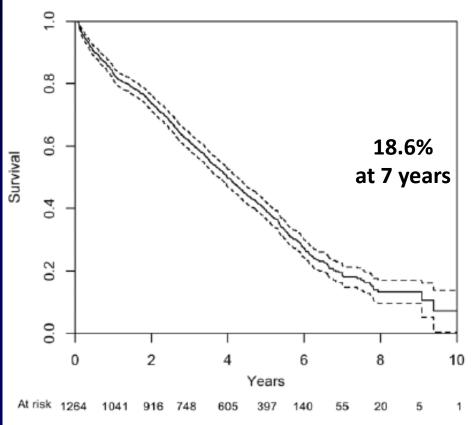

121

Long term f/u of TAVR NOTION Trial 6-year f/u

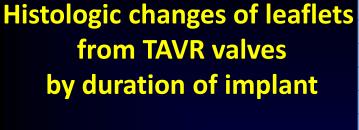
Structural Valve (SVD)

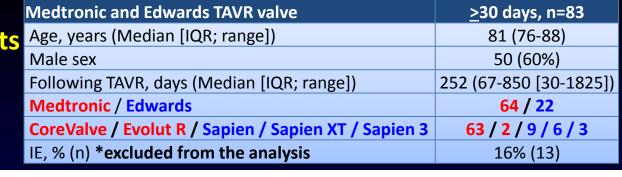
Bioprosthetic Valve Failure (BVF)

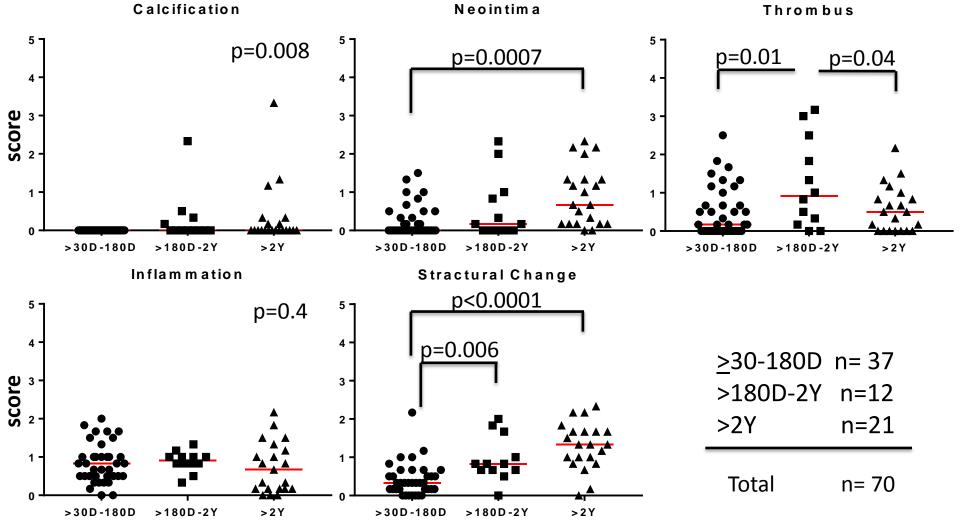



BVF (Valve-related Death, AV reintervention, severe SVD) rate were low and similar for both groups

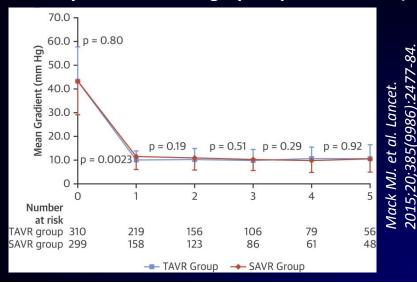
Longest follow-up data TAVR French Registry

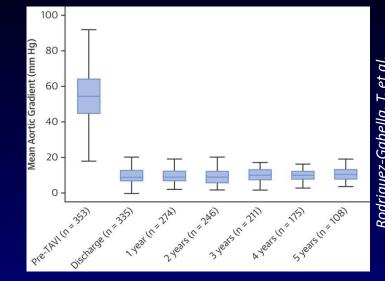

Cumulative incidence of moderate and severe Structural valve deterioraton



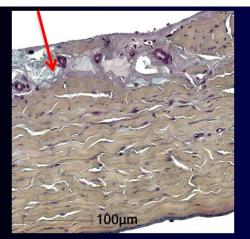


The rate of structural valve deterioration was low, however, long-term assessment was limited by the poor survival rate

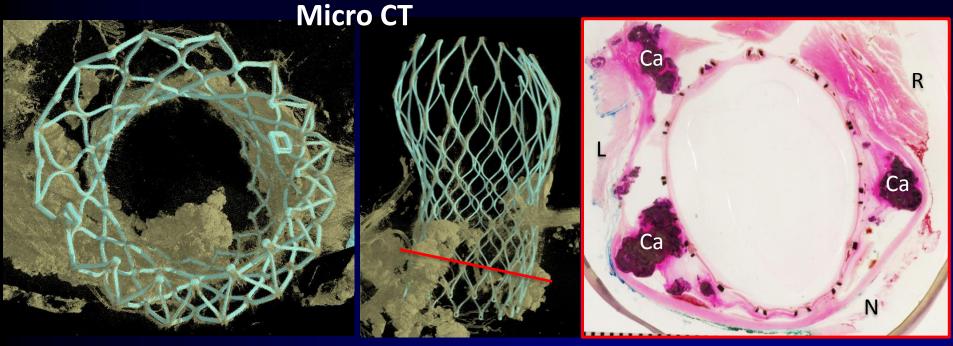



Transcatheter Valve Durability

CoreValve 5-year Follow-up (registry)


base

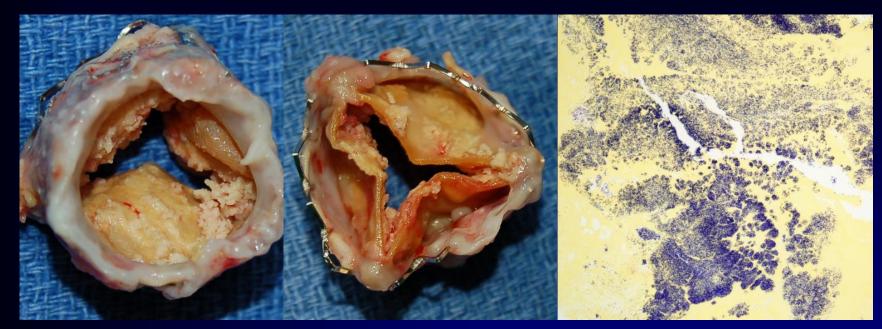
NCC aortic side


ventricular side

A case with mild structural changes

89 y.o. female, with a history of AS, DM, HLP, HTN, and CHF Died due to congestive heart failure, 1477days (4 years) after TAVR implantation

Structural and procedural difference between TAVR and SAVR valve

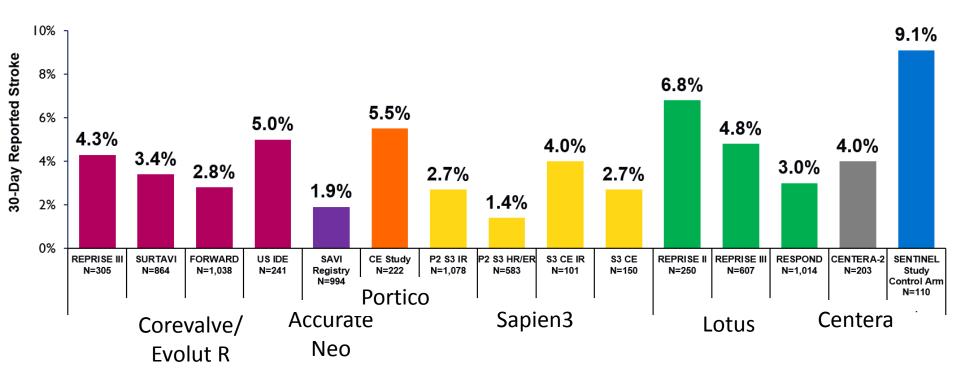


- Thinner leaflets for transcatheter delivery (TAVR 0.25mm, SAVR 0.4 mm)
- Native aortic valve calcification and oval-shaped annulus hamper circular and symmetric stent deployment
- Higher stress and strain are burdened into a prosthesis during procedure

Martin C et al. J Biomech 2015 Sep 18;48(12):3026-34. Hwang IC et al. Circ J. 2019 Apr 5. [Epub ahead of print]

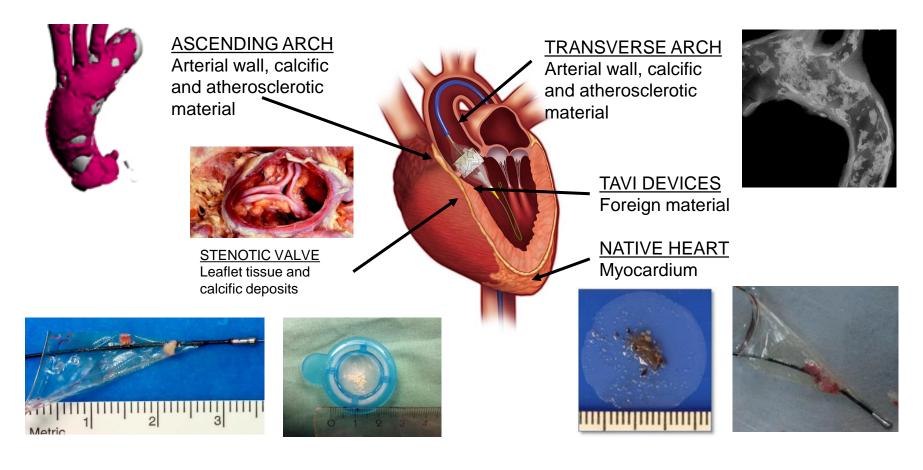
Regueiro A, et al. JAMA 2016:316(10):1083-92

Bioprosthetic valve failure: Endocarditis

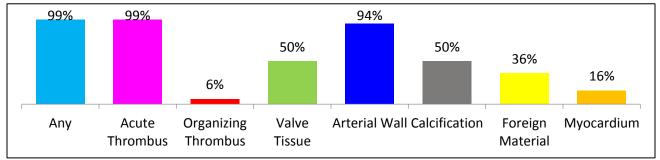


Endocarditis: CVPath Registry

	Cases with Endocarditis N=12 (15%)				
Age	80 (74-87)				
Sex (male), %	67%				
Duration, days	340 (111-962)				


TAVR Stroke Rates with Contemporary Devices

- Stroke remains an issue (~4.4% average rate) in contemporary TAVR studies.
- TAVR device trials tend to emphasize only the major/disabling stroke rates.

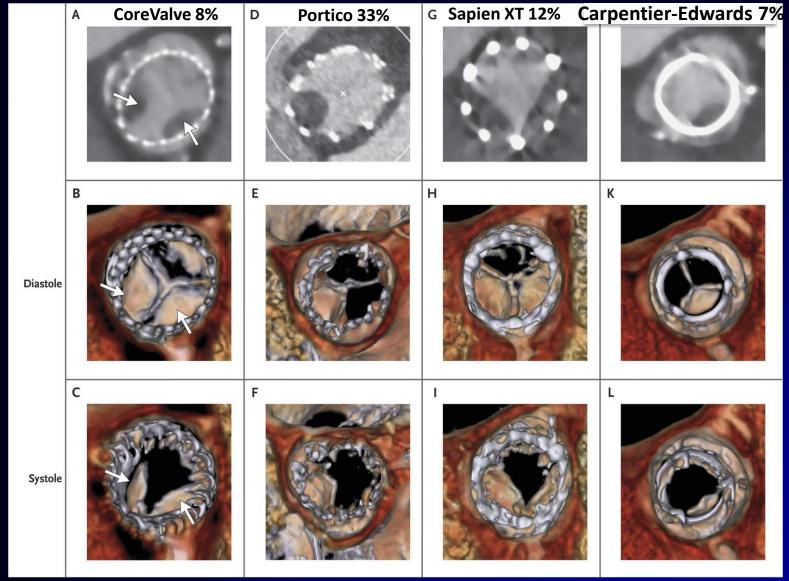


¹ Feldman, et al., EuroPCR 2017; ²Manoharan, et al., *J Am Coll Cardiol Intv* 2015; 8: 1359-67; ³Moellman, et al., PCR London Valves 2015; ⁴Grube, et al., EuroPCR 2017; ⁵Kodali, et al., *Eur Heart J* 2016; ⁶Vahanian, et al., EuroPCR 2015; ⁷Webb, et. al. *J Am Coll Cardiol Intv* 2015; 8: 1797-806; ⁸DeMarco, et al, TCT 2015; ⁹Meredith, et al., PCR London Valves 2015; ¹⁰Falk, et al. Eur Heart J 2017; ¹¹Kodali, TCT 2016; ¹²Reardon, M *NEJM* 2017; ¹³Reichenspurner H, et al., *JACC* 2017; ¹⁴Popma et al, JACC:CVInt 2017;10(3):268-75

Sources of Debris During TAVR

Patients with captured debris

According to the meta-analysis...

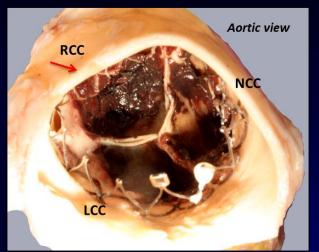

All cause mortality @ 1M

	TAV	TAVR SAVR			Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% CI
ITALIAN OBSERVANT	20	650	24	650	23.5%	0.83 [0.47, 1.49]		
Latib	2	111	2	111	2.1%	1.00 [0.14, 6.97]	-	
NOTION	3	139	5	135	4.0%	0.58 [0.14, 2.39]	-	
PARTNER 2A	39	1011	41	1021	43.3%	0.96 [0.63, 1.48]	-	-
Piazza	20	255	18	255	21.3%	1.11 [0.60, 2.05]		
STACCATO	2	34	0	36	0.9%	5.29 [0.26, 106.27]		
TAVIK	3	216	9	216	4.8%	0.33 [0.09, 1.21]		-
US PIVOTAL	0	202	0	181		Not estimable		
Total (95% CI)		2618		2605	100.0%	0.91 [0.68, 1.20]	•	•
Total events	89		99					
Heterogeneity: Tau ² = 0.	00; Chi2=	4.59,	df = 6 (P :	= 0.60)	$1^2 = 0\%$		0.04	40 400
Test for overall effect: Z:	= 0.67 (P	= 0.50)	ľ				0.01 0.1 1	10 100
Cerebrovascula	r (C)/A	\ inc	idone	$\sim \omega$	11/		Favors TAVR	Favors SAVR

	TAVR SAV		/R Risk Ratio		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
ITALIAN OBSERVANT	8	650	14	650	11.1%	0.57 [0.24, 1.35]	
Latib	4	111	9	111	6.3%	0.44 [0.14, 1.40]	· · · · · · · · · · · · · · · · · · ·
NOTION	4	139	4	135	4.4%	0.97 [0.25, 3.81]	
PARTNER 2A	64	1011	65	1021	74.1%	0.99 [0.71, 1.39]	
Piazza	0	255	0	255		Not estimable	
STACCATO	2	34	1	36	1.5%	2.12 [0.20, 22.30]	
TAVIK	3	216	2	216	2.6%	1.50 [0.25, 8.89]	10 10 10 10 10 10 10 10 10 10 10 10 10 1
US PIVOTAL	0	202	0	181		Not estimable	
Total (95% CI)		2618		2605	100.0%	0.91 [0.68, 1.21]	•
Total events	85		95				3.6
Heterogeneity: Tau ² = 0.	.00; Chi ² =	3.69,	df = 5 (P :	= 0.59);	12 = 0%		100
Test for overall effect: Z							0.01 0.1 1 10 100
			5.				Favors TAVR _ Favors SAVR

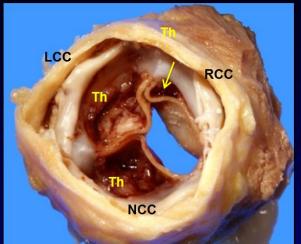
TAVR and SAVR What is the differences?

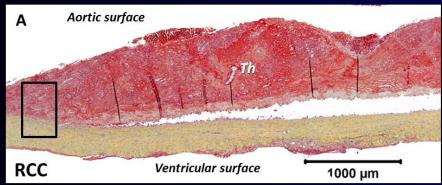
Evidence of Reduced Leaflet Motion in Multiple Prosthesis Types.

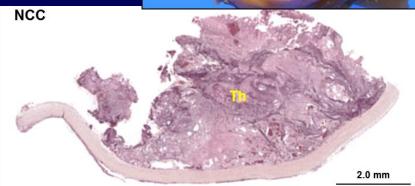


Makkar R, et al. N Engl J Med 2015;373(21):2015-24

Transcatheter aortic valve failure: Severe Thrombosis (5%)

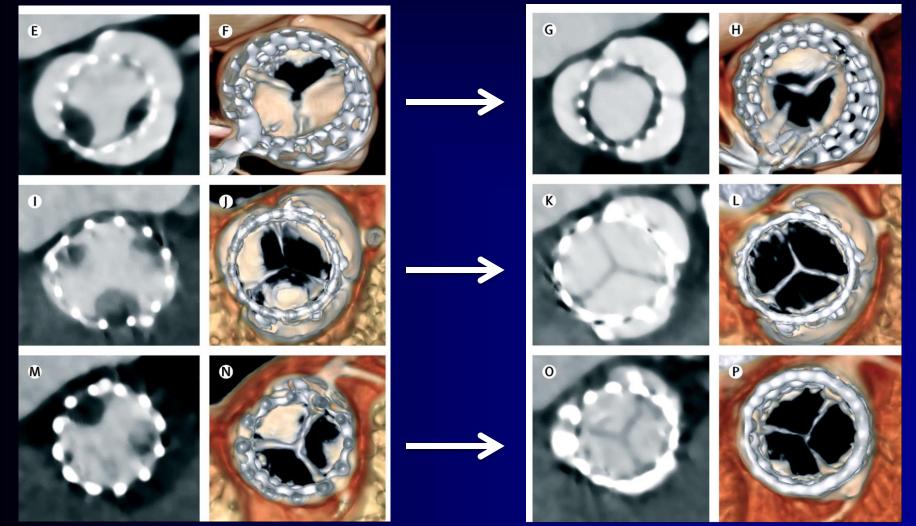

CoreValve: 15 days


De Marchena E, R Virmani, et al. JACC Cardiovasc Interv. 2015 Apr 27;8(5):728-39.



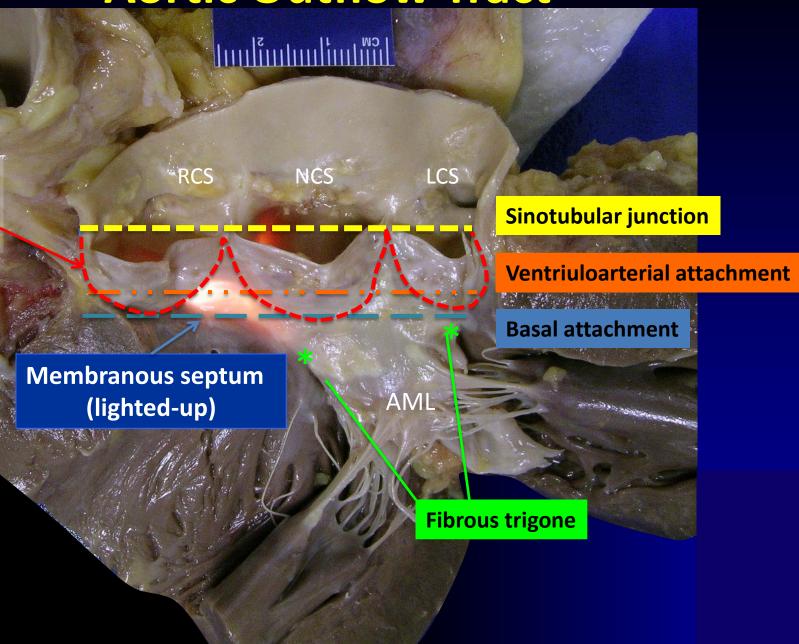
SAPIEN: 495 days

Yahagi K, et al. Catheter Cardiovasc Interv. 2017 15;90(6):1048-1057.

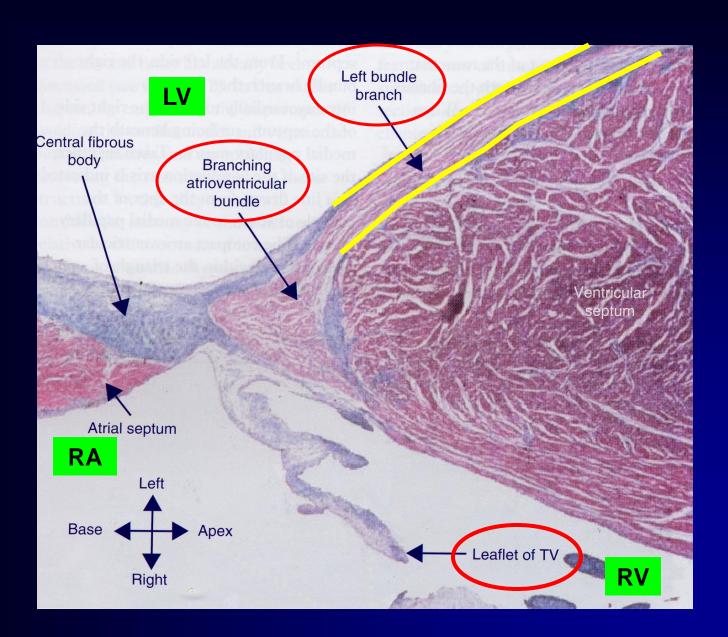


	Overall N=66	Cases with Severe thrombus N=12 (18%)	Cases without Severe thrombus N=54 (82%)	P value
Age	81 (76-88)	85 (76-89)	81 (76-88)	0.7
Sex (male), %	65%	50%	67%	0.3
Duration, days	252 (67-850)	257 (86-857)	104 (54-776)	0.3

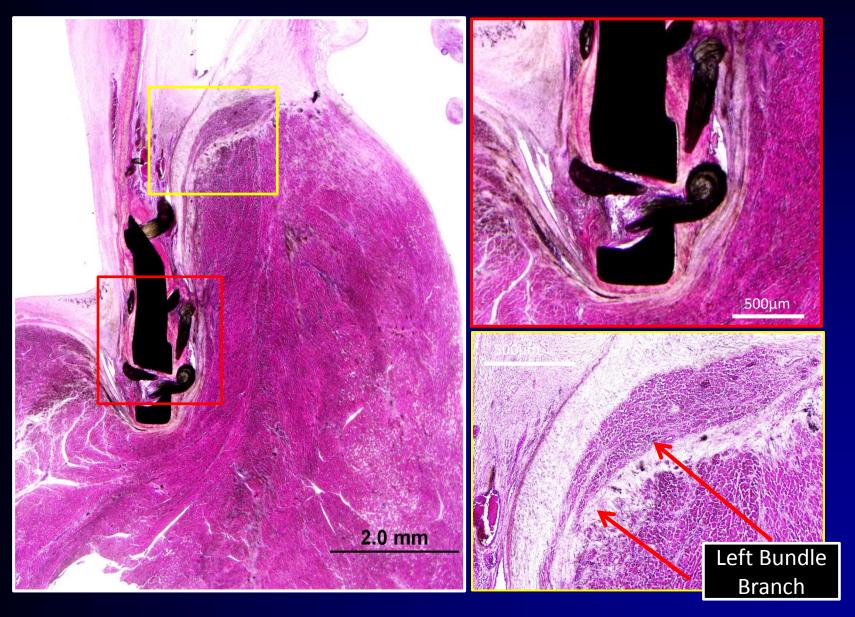
Oral anticoagulation therapy (OAC), but not DAPT, was effective in prevention or treatment of subclinical leaflet thrombosis.


Reduced leaflet motion in a patient receiving DAPT after TAVR

Resolution of reduced leaflet motion following 3 months of OAC


Chakravarty T et al. Lancet. 2017 Jun 17;389(10087):2383-2392

Aortic Outflow Tract



Aortic valve
Attachment
ring

Left Bundle Branch

A 82 Years Old Case Treated with a Pacemaker Implant after TAVR with CoreValve

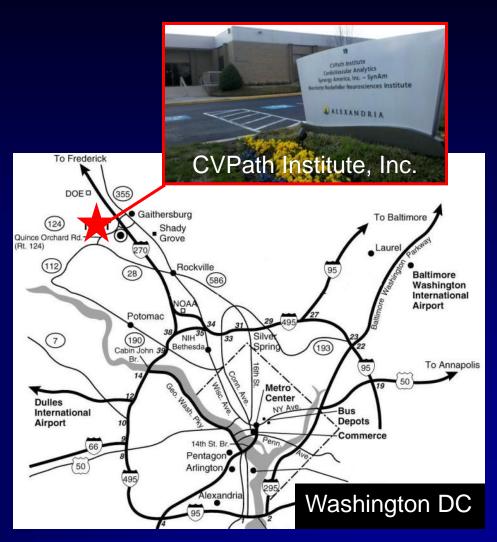
Association between implantation depth assessed by computed tomography and new-onset conduction disturbances after TAVR

MDCT measurements before and after TAVR

MDCT	Total (N = 138)	$Conduction \ disturbances \ (N=63)$	No conduction disturbances (N $=$ 75)	<i>p</i> -value
Pre-interventional	<u> </u>			
Annulus area (mm²)	444 ± 84	449 ± 77	440 ± 91	0.520
Annulus eccentricity (%)	25.4 ± 8.9	25.5 ± 10.6	25.3 ± 7.3	0.913
Cover index (%)	18.4 ± 12.9	21.6 ± 12.1	15.6 ± 12.9	0.007
Oversizing (by nominal prosthesis area, %)	25.6 ± 20.1	30.6 ± 20.0	21.4 ± 19.4	0.009
Aortic valve complex calcium (mm ³)	184 ± 297	184 ± 273	178 ± 311	0.666
Left ventricle outflow tract calcium (mm ³)	11 ± 35	6 ± 17	16 ± 45	0.235
Post-interventional				
Transcatheter aortic valve area (mm2)	407 ± 70.2	420 ± 63	396 ± 74	0.049
Expansion (%)	72.9 ± 18.0	67.4 ± 14.0	77.2 ± 16.0	0.001
Eccentricity index (%)	10.2 ± 9.9	11.6 ± 8.0	8.7 ± 9.8	0.042
Implantation depth (mm)	7.0 ± 2.8	7.7 ± 2.9	6.4 ± 2.6	0.006

Univariate and multivariate logistic regression analysis to identify independent associations with Conduction Disturbances

	Univariate	analysis		Multivariate analysis		
	OR	95% CI	p-value	OR	95% CI	<i>p</i> -value
Age	0.99	0.95-1.04	0.752			
Male gender	1.40	0.72 - 2.74	0.327			
Chronic obstructive pulmonar disease	2.47	1.07-5.71	0.034	3.14	1.26-7.84	0.014
Self-expandable prosthesis	2.33	1.16-4.68	0.018			
Oversizing	1.02	1.01-1.04	0.01	1.02	1.00-1.04	0.02
Expansion	0.96	0.93 - 0.99	0.008			
Eccentricity index	1.04	0.99 - 1.09	0.096			
Implantation depth	1.20	1.05-1.36	0.004	1.16	1.01-1.33	0.035


Summary

- Indication of TAVR for low-risk patients are expanding, long-term data of prosthetic valve durability are warranted.
- Up to this point, clinical BVF rate seems similar between TAVR and SAVR.
- Structural changes of the leaflet are likely the main causation of late (>5 year) bioprosthetic valve failure.
- Major structural changes for the most part were not seen in our pathological evaluation of TAVR devices though the duration of these implants is limited
- Meta analysis shows cerebrovascular event at 1 month is similar, however, cerebrovascular outcome of TAVR may improve with distal emboli in the future.
- Pathological severe thrombosis, that may cause reduced leaflet motion; was seen in 12% in CVPath TAVR registry. Oral anticoagulation therapy, but not DAPT, is effective in prevention or treatment of subclinical leaflet thrombosis.
- Rate of pacemaker implantation is still a concern in TAVR, and implantation depth matters.

Acknowledgments

CVPath Institute

Yu Sato, MD Atsushi Sakamoto, MD Hiroyuki Jinnouchi, MD Salome Kunts, MD Anne Cornelissen, MD Liang Guo, PhD Russ Jones Abebe Atiso, HT Jinky Beyer Lila Adams, HT Dipti Surve, MD Maria Romero, MD Frank D Kolodgie, PhD Renu Virmani, MD

